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This paper describes theoretical and experimental work carried out a t  the 
Cavendish Laboratory of the University of Cambridge. The main object of the 
work was to develop a new technique for measuring the structure of fluid 
turbulence. 

A parallel beam of light is passed through the turbulent region, containing 
refractive index fluctuations, and analyzed on exit by gratings of periodic 
transmissivity. Two forms of analysis yield (u) the spatial power spectrum of the 
refractive index fluctuations in the turbulence, and ( b )  the velocity distribution 
within the beam aperture. The method does not disturb the fluid physically, does 
not depend on the existence of a mean flow velocity, and works well in liquids. 

One of the limitations of this single-beam method is that it produces informa- 
tion averaged along the path length of the beam in the turbulence, and to over- 
come this a cross-beam technique, using two beams intersecting a t  right-angles, 
has been developed in theory. This method gives the spatial power spectrum of 
the refractive index fluctuations, as does the single beam method, but the results 
are characteristic only of the volume of intersection of the beams. 

The paper first discusses the theory of the single-beam and crossed-beam 
techniques, and then experimental results obtained with the single-beam method. 

The turbulent region investigated was a rectangular tank of water, heated 
from below and cooled from above, producing convective turbulence of high 
Rayleigh number (4.1 x lo8), EL system difficult to analyze by conventional 
methods of measurement, such as the hot-wire anemometer. 

Spectral density functions (power spectra) of refractive index, and hence in this 
case temperature fluctuations, have been measured, as havevelocity distributions. 
Statistical analysis of the results also gives useful information about the Eulerian 
time scale of the turbulent field. 

1. Introduction 
When a wave motion is incident upon a field of turbulence, it is in general 

modified according to the structure of that field, and, on emerging, carries with it 
information about the field. 

Much theoretical work has already been published on wave scattering by 
turbulence, but not for the purpose of developing new methods of measurement, 
rather to investigate problematic phenomena such as the propagation of radio 
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waves through the atmosphere, stellar scintillation, sound scattering in oceano- 
graphy, and the problem of aircraft noise. Particular references are Batchelor 
(1957), Tatarski (1961) and Townsend (1965). 

The hot-wire anemometer is probably the most important current method of 
measuring turbulent structure, but in many circumstances it has some inherent 
disadvantages, and optical methods are now receiving much attention as a 
possible alternative. The method proposed here has advantage over the hot wire 
principally because it (i) does not disturb the flow physically; (ii) works very well 
in liquids; (iii) gives meaningful results even when the mean flow velocity is zero, 
(iv) has a, spatial resolution limit set by diffraction and beam divergence, which 
in practice is an improvement over the hot wire; (v) retains its calibration 
satisfactorily. 

It naturally has limitations of its own, principally (i) the sampling volume (the 
volume of the beam in the turbulence) must be large compared with the scale of 
the turbulence being measured; (ii) the field must be reasonably homogeneous 
over this volume. 

2. Theory of optical Fourier analysis by periodic grating 
2.1. The effect of a grating on a given incident intensity pattern 

For simplicity, a grating of square cross-section will be considered initially 
(figure 1). 

Suppose the intensity falling on the grating is 

I(r ; t )  = I, + a( k; x ;  t )  e i k S r ,  (1) 

i.e. a Fourier expansion in the x, y plane at  z in wave-number k = ( I ,  m); t = time, 
r = (z, y, z)  and I, = constant. 

k 

Turbulent region Grating 

FIGURE 1. Basic geometry. All the light transmitted by the grating is 
focused onto a photocell. 

Suppose also that the transmissivity of the grating is 

T ( x )  = p(l+hcosk,z). (2) 

Although in practice, it may be convenient to have a square-wave grating 
transmissivity, results so obtained can be corrected to those of a sinusoidal 
grating (see 42.6). 
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Thus the Ootal amount of light transmitted by the grating, and received by the 
photocell, is (adding intensities, as appropriate when the period of the grating is 
large compared with the wavelength of light), 

The first term in (3) is constant. If the grating has an integral number of 
periods, the second term is zero. If not, this term only contributes a small extra 
constant. Only fluctuating terms will ultimately be retained. 

The third term is the integral of the fluctuations over the aperture with no 
grating present, x 8. If the aperture is sufficiently large,this term will be negligibly 
small. More rigorously, 

Now the weighting functions sin (&ZL)/&ZL, sin+mL/&mL peak at  zero wave- 
number, and have a half width - n/L. Also, ~ ( 0 ;  Z; t )  = 0. Thus, if a(k; z ;  t )  does 
not attain large values for 1,m < n/L, this is a small term. If not negligible, it 
represents a low-frequency background signal, independent of k,, i.e. effectively 
a low-frequency noise output. It can be removed by using a high pass filter, or 
measured as p2 x (mean square signal with no grating present), with p typically 
5 4. In  the experimental results discussed later, this background was small 
compared with the noise level of the photocell. 

Thus, from the last term of (3), the fluotuating part of the received light signal 
is, to a good approximation, 

neglecting terms in l/(Z+ko) compared with those in l / (Z-k,)  in the summation 
over k = ( I ,  m). So, denoting complex conjugates by*, 

x ri(4-ko) L1)2+ r, x a(k; z ;  t ) a * ( k ;  Z; t )  
k k ’  
k+k’ 

Q ( E  k0)L 

sin(4mL) sin(&m’L) sin[&(Z- k,)L] sin[i(Z’- ~ -~ k,)L] 
X 

&zL gm‘L +(2-ko)L &(E’-ko)L 
39 
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One now needs to assume some homogeneity in order to use the unrelated 
phase property of two wave-numbers. [For a homogeneous field, the phases of 
any two structure components corresponding to different wave-numbers are 
unrelated; see Batchelor (1959a).] Difficulty is experienced with Fourier sums for 
homogeneous fields, which are effectively infinite in spatial extent, and one must 
resort to Fourier-Stieltjes integrals or the simpler approach, used here, of 
assuming homogeneity over some dimension D, and assuming that the field has 
periodicity D .  This enables Fourier series to be used. 

Using 27r/k, as typical of the scale of turbulence being measured, if 27r/k0 < D, 
the unrelated phase property can be used as an approximation, reducing to 
negligible size the double sum of equation ( 5 ) ,  in time average. 

The component wave-numbers in ( 1 )  are integral multiples of 2n/D. Also, the 
width of the weighting functions of type sin(%mL)/&mL is of order 2n/L, so if 
D 9 L, the remaining sum in (5) can be replaced by an integral, and if 2 n / L  < Ic,, 
a(k; z ;  t )  can be replaced by its value at  the central wave-number of the weighting 
functions, i.e. k = (k,, 0). 

Making these approximations, the time average of ( 5 )  becomes 

A T k X =  7 ~ ~ / 3 ~ h ~ L ~ ( D / 2 n ) ~ 4 k , ,  0; Z; t)a"(k,, 0; Z; t )  (6) 

subject to the conditions D $ L, k,L > 27~. (7) 

The grating therefore acts as a spatial filter for the wave-number (k,,, 0). 
Gratings have been used by Protheroe (1964) to analyze stellar shadow bands. 

2.2. The spectral density function, or 'power spectrum' 

For a given function f(r; t ) ,  the corresponding spectral density function, P ( K ) ,  
can be defined as the contribution to f2(r;t) per unit volume of K space, at  
wave-number K = (I, m, n),  so 

n L  n 

P ( K ) d K .  
all K space 

fW)= J J J 
Also, for a homogeneous field, F ( K )  can be defined as the Fourier transform of 

the correlation function formed from f(r; t )  at two points rl, r2, vie. 

Equation (8) then follows from (9) with rl = r , .P(K) is thus of fundamental 
importance in turbulence theory. 

Iff(r;  t )  is written as a Fourier sum 

then 

f(r; t )  = C q ( K ;  t)eiKSr, 
K 

using the unrelated phase property as in 92.1. 
One form forf(r; t )  which will be used later is 

f(r; t )  = &(K; t )  cos [ K .  r + a ( K ;  t ) ]  
K 



An optical study of turbulence 611 

with Q ,  a real. In this case (Roe 1968), 

P(K) = 4 ( D / 2 ~ ) ~ & 2 ( K ; ) .  (13) 

In two dimensions, K = (Z,m,n) becomes k = (Z,m) and the (D/27r)3 factors 
become ( D / ~ T ) ~ .  

It is now clear, from (6) and (ll), that the mean-square fluctuation in the light 
signal, AJ2(ko;z) ,  is proportional to one component of the spectral density 
function of the intensity fluctuations incident upon the grating (the (k0, 0) 
component). 

Hereafter, ‘spectral density function’ will be abbreviated to ‘ s.d.f.’ 

2.3. The relation between the s.d. f. of intensityJEuctuations incident on the grating 
and the s.d.1. of refractive indmJEuctuations in the turbulent region 

Assume that wave amplitudes of light scattered from the turbulence are small 
compared with that of the incident beam (a valid assumption in practice). 
A suitable optical arrangement providing a parallel beam through the turbulence 
is shown in figure 2. 

Lamp pinhole 

Turbulent 
region 

--go - Grating w Photocell 

FIGURE 2. A suitable optical arrangement. 

Let a monochromatic plane wave pass through a thin layer having refractive 
index variations in space and time. The wave emerges with an amplitude little 
different from the incident amplitude, but with phase variations in the 5, y plane 
(the beam is taken as the x axis). 

39-2 
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Let the incident wave be exp[i(Nz - wt)], where N = 2;rr/(light wavelength in 
medium outside turbulent region), w = angular frequency. The time variation 
will be assumed implicitly hereafter. 

If z = 0 is the exit plane from the layer, the complex amplitude at  this plane, 
relative to  that for no refractive index variations, will be 

0 

- h  
exp[i$(x, y)l> where 4 = N /  (p-p0)dz7 (14) 

p(r; t )  = local refractive index, ,uo = mean refractive index and h = layer 
thickness. 

When # 1 (thin layer), 

exp[i$(x, y)] = 1 + i C b(k) cos [k. r + a(k)], (15) 
k 

where qi has been written as a Fourier sum over wave-number k = ( I ,  m). b(k) and 
a(k) are real functions of k, and time. The cosine form is used here to avoid 
confusion of exponentials in the sum with ei@. 

The s.d.f. of phase fluctuations is thus, from (13) and (15), 
__ 

Q ( k )  = $(D/277)2b2(k). (16) 

The first term in (15) corresponds to the original incident wave, and the second 
to a summation over wave-number of a pair of scattered waves 

@(k)exp [i(Zx +my + n’z + a)] + +b(k)exp [ - i(Zx +my- n’z+ a)], 

with wave normals in directions (I, m, n’) and ( - I ,  -m, n’) respectively, the 
light wave-number changing, on passing through the turbulence, from (0, 0, N )  
to  ( I ,  m, n’). By conservation of vector wave-number, 

12 + m2 + n’2 = N2. 

For planes other than z = 0, the z dependence can now be introduced, remem- 
bering that the incident wave is eiNz. The total incident + scattered wave is thus, 
from (15), 

(17) 

exp[iNz] + i 2 exp[in’z] b(k) cos (k.  r + a) 
k 

= exp[iNz] [1+ i C exp[i(n’ -N)z]b(k) cos (k.  r + a)]. (18) 

Multiplying this by its complex conjugate, to  the same approximation of weak 
scattering, intensity variations are given by 

k 

I(r) = I ,  + 2102 sin [ ( N  -n‘)z] 6(k) cos (k. r + a), (19) 

where unit incident intensity is now replaced by Io. It is this intensity pattern 
I(r) which falls on the grating, at z. Compare (19) with (1). 

k 

The s.d.f. of the intensity fluctuations is, from (1)) ( l l ) ,  (13) and (19)) 

(D/2n)2a(k;z)a*(k;z) = 9(D/27r)241:sin2[(N-n’)]zb2(k) 

= 41isin2[(N-n’)z].Q(k) 
using (16). 
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The largest wave-numbers of phase variation are much smaller than the optical 
wave-number N ,  so 12 + m2 < N2,  and, from (17) we may write 

N-n'  = (Z2+m2)/2N. (21) 

Let us now express the refractive index fluctuations in the turbulent region as a 

where K = ( 1 ,  m, n )  as before, g(K)  and y(K) are real functions of K, and time. 
The s.d.f. of p -p, is thus, from (12) and (22), 

G(K) = $ ( D / 2 ~ ) ~ 9 2 ( K ) .  (23) 

One can then readily show, from (14 ) ,  (22) and (23), the following relation between 
power spectra, 

(24) @(k) = (D/2n)-14N2 C C(K) sin2(&nh), 
n n2 

in which the summation can be replaced by an integral if D 
Thus, from (20)  and ( 2 4 ) ,  with the approximation (21), 

h. 

sin2 ( inh)  
d(&nh). ( 2 5 )  

(12 + m2)x 
(D/2n)2a(k; z)a*(k; z )  = 81isin2 

If nh B 2n or k,h 9 2n, using k, as the measured wave-number scale, G(K) will 
not vary substantially from its value at the centre of the weighting function 
(at n = 0) for significant contributions to the integral, so approximately 

(D/2n)2a(k;x)a*(k;  x )  = 81gsin2 [ ( 1 2  ___ i:"'"] N2hnG(1, m, 0) ,  

subject to the conditions D 9 h and k,h B 2n. (27) 

A result similar to (26) has been proved by Townsend (1965) and Tatarski 
(1961). 

2.4. The relation between the measured light signal and the s.d.f. of the 
refractive index juctuations in the turbulent region 

From (6) and (26), the time mean-square fluctuation in the light signal received by 
the photocell is, 

AJ2(ko; z )  = 8n31i/32h2L2N2hsin2 (kgz/2N) G(ko, 0,  0 ) ,  (28) 

subject to D B h, L; k,h 9 2n; koL 9 277. (29) 

Summarizing these conditions, therefore, the grating must have many lines within 
its width L, the sampling volume (L  x L x h) must be large compared with the 
scale of turbulence being measured, and the field must be homogeneous over at 
least the sampling volume. The latter condition need not be applied too strictly 
if mean values over the sampling volume are required. 

From (28), note the following; 
(i) It is G(k,, 0,O) which one hopes to measure here, by varying k,, i.e. by using 

a succession of gratings. Turning the grating through 90" measures G(0, k,,, 0). 
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(ii) For small lc%z/2N, sensitivity is increased by increasing z, until limited by 
beam divergence and aperture diffraction (Roe 1968). 

(iii) For small k i z / 2 N ,  the mean square signal fluctuations cc k iG.  If a suffi- 
ciently wide equilibrium range of wave-numbers exist, there is theoretical support 
for G cc k i p ,  wherep is approximately 4 (see $7.3).  Thus the above light signal has 
a weak dependence on k,, and detection apparatus need only cover a small range 
of signal strength. This is most convenient when measuring strong power-law 
variations of this kind. 

(iv) The mean-square signal fluctuation ot area of grating (D),  and not the 
square of this. This is because increasing the grating dimension L increases the 
transmission area as L2, but the weighting function in (5) varies its width as L-1. 

(v) The mean square signal fluctuation cc h, and not to h2. This is due to the 
‘random walk’ nature of the beam path through the turbulence. 

(vi) The method is particularly useful in measuring a one-dimensional spec- 
trum in the strict sense, i.e. G(1, m, n) with any two of I, m, n zero (the full K space 
distribution is obtained by varying the beam direction, if desired). It does not 
measure a summation of all distributions with a component in the chosen 
direction (as does a hot wire with velocity distributions) ; neither does it average G 
over all directions. The extent of anisotropy can thus be found. Note that 

( p - , ~ , ) ~  = / / / G ( Z , m , n ) d K  = s 477K2G(K)dK (30) 
__. . ___ 

in the isotropic case, with K = (P + m2 + n2)$. 
In thermal turbulence, where the refractive index field is due to temperature 

variation, the s.d.f. of refractive index fluctuations is proportional to the s.d.f. for 
density and temperature fluctuations, for small fluctuations of temperature. 

Turbulent region 

FIGURE 3. Diagrammatic representation of optical Fourier analysis. 

(vii) A simple illustration of this method is shown in figure 3, where the inclined 
lines represent wave crests (or troughs) in the spatial variation of some arbitrary 
Fourier component. Both along the path of the beam, and along the lines of the 
grating, the crests and troughs tend to average out, giving a zero light signal 
fluctuation. Only when I = n = 0, and the crests and troughs are parallel to the 
plane defined by the beam direction and grating lines, does the grating transmit a 
signal fluctuation, corresponding in this case to G(0, k,, 0). 
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2.5. Removal of the assumption that the scattering thickness showld be s m l l  

If the scattering thickness (length of beam path through turbulent region), H, is 
considerably greater than the scale of the turbulence, the pattern at the grating, 
and hence the measured light signal is a superposition of independent contribu- 
tions from thin layers a t  all distances from x to z + H .  

Therefore from (28 ) ,  replacing h by dz, and integrating from z to z + H ,  

AJ2(ko; Z) = 4m34P2h2L2N3E(k;/N, 2, H )  G(ko, 0, 0) ,  (31 )  
where 

E ( k i / N , z , H )  = (l/ki) [k~H/N+2cos[k~(z+~H)/N]sin(k~H/SN)]. (32 )  

This function E can be calculated for a given experimental configuration, as a 
function of k,. Note that as k0+ 0, 

E-+ (H/2N3)  (z+ &H)2k: and AJ2(k,; x )  

+ 2.;rr31;;P2h2L2H(z + iH)2k:G(k,,  0,O). (33) 

This is independent of N ,  the wave-number of the light used. Thus if E is 
calculated from (32 )  and found to be a good approximation to a fourth power 
dependence on k, over the range of k, used, the dependence of on N will be 
small, enabling white, instead of monochromatic light to be used. 

2.6. Harmonic correction for a square wave grating 
The theory of 3 2.1 assumes a grating of transmissivity 

T ( x )  =p( l+hcosk ,x )  N p( l+cosk ,x )  
in practice. 

( 3 4 )  

I 2?rlk, - 
FIGURE 4. Square wave grating transmissivity. 

The simplest grating to manufacture photographically (and that used in the 
present experimental arrangement) has the periodic transmissivity T’(z) shown 
in figure 4 ,  which can be written 

T’(x) = p[1+ (4/4 (cos k,x - + cos 3k,x + 3 cos 5k,z - . . .)I. (35)  

Using (35 ) ,  instead of ( 2 ) ,  in ( 3 )  produces the square wave grating mean-square 
light-signal fluctuation, written here as=:, of 
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where rJ5is  the mean-square light-signal fluctuation for an equivalent sinusoidal 
grating. 

Writing similar relations for A 3 ( 3 k 0 ; z ) ,  AJ:(5kO;:,;z), etc., one has a set of 
simultaneous linear equations which can be written in matrix form and solved to 
give 

A J z ( k T )  = (n2/ 16) [AJ;(k,;  Z )  - $AJ:( 3k,; X )  - -&AJ:(5k0; x ) .  . .I. (37) 

The square wave grating gives a plot of-: vs. k,. This can then be corrected to 
a plot of A ~ w s .  k, (as required) using (37). 

2.7. The case of a circular aperture 

The theory so far presented has been for a square beam aperture of side L. It may 
be more convenient in practice to have a circular aperture, of radius R,  say. 
Equation (4) then becomes 

(38) 
Jl(k-R) 

k ( k 3 )  ’ 
AJ(ko;  Z ;  t )  = n/3AR2 a(k; X ;  t )  ___ 

where (kJ2  = (1 - IC,,)~ + m2, and J1 is the Bessel function of order unity. 
The weighting function 

L2[sin(&nL)/&mL] [sin[&@ - k,)L]/&(Z- k,)L] 

has become 2nR2J1( k- R)/(  k- R). 

As (I, m) -+ (k,,O), both these functions tend to  the area of the grating, L2 and 
nR2respectively. Likewise, one can show that the only change in the fundamental 
result (28) is a substitution of nR2 for L2, viz. 

____ 
AJ2(k0;x) = 8n4IgP2A2R2N2hsin2 (kgz/2N) G(ko, 0,O).  (39) 

D 9 h, R; k,h 9 2n; k,R 9 4. (40) 

The validity conditions (29) become 

3. The use of crossed beams 
3.1. The need for crossed beams 

One of the main objections to the single-beam method discussed so far is that the 
measured information is the integrated effect over the path length of the beam 
through the turbulence. In  cases of reasonable homogeneity, this is of little 
matter, but there is generally a need to obtain information characteristic of a 
certain sample of the total turbulent volume. 

This can be achieved in the present case by having two beams intersecting at 
right-angles, when it can be shown that the information received is characteristic 
only of the volume of intersection of the beams. Unlike the single-beam case, this 
has not been tested experimentally. The following discussion is therefore proposal 
only. 

The case of two crossed beams which suffer absorption only has been con- 
sidered by Fisher & Krause (1967), and they have obtained results which compare 
favourably with established hot-wire results. 



An optical study of turbulence 617 

3.2. Theory of the crossed-beam method 

For the sake of brevity, references will be made, where possible, to the single-beam 
theory of 5 2, and a slightly different order of argument will be used (the previous 
order emphasized the relations between the various power spectra). 

It will be assumed initially that signal contributions come from a path length 

Ll, rather greater than h (see figure 5 ) ,  and then shown that only the length h is in 
fact relevant. 

2 

1 

FIGURE 5. The crossed-beam technique. 

The refractive index field will again be written as the Fourier sum of equation 

For beam 1, the relative phase shift on travelling a length Ll of fluid (including 
(22). 

the length h), taking z = 0 as the exit plane, is therefore, as in (14), so (iu-IUo)dz 
-Ll 

$%?I) = N 
sin(,n 

= NLlC 576) QnL, cos ( ~ x  - my + y - inLl). (41) 
K 

The complex amplitude at this plane will be (for unit incident amplitude) 
exp[i#] e 1 + iq5 for small angles of scattering. For other values of z, taking the 
incident wave as exp[iNz], time variation being assumed implicitly, the total 
amplitude is therefore 

- .  . . .  
Intensity variations are obtained by multiplying (42) by its complex conjugate 

(to the approximation of weak scattering used throughout), and for incident 
intensity I,, the fluctuations falling on grating 1, at z = d,, are 

AIl(x, y) = 2IONL, sin cos (lx +my + y - JnL,). (43) 
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The intensity fluctuations transmitted by grating 1 ,  with transmissivity 
p(l +hcosk,c,y), are 

fA &A 
AJl = / 1 AIl(z,y)/3(1 +hcosk,y)dxdy, (44) 

-4h -4h 

which gives, neglecting the constant background signal as before, 

AJ1 = PhNLlh21, sin [IZz+Nm2d1] - g(K)cos(y- +NLl) 
K 

sin(*nL,) sin(4Zh) sin[&(m-k,)h] 
QnL, -;Zh +(m-k,)h * (45) x _ _ ~ _ _ _  

Similarly, the intensity fluctuations transmitted by grating 2 are, 

AJ2 = phNL,h210 C sin [ me2+Nrr2d,] ~ g(K) cos (y- BE,) 
K 

sin ( @L2) sin (&ah) sin [&(m - k,)h] 
* (46) Q1L2 +nh +(m-k,)h 

x ____ 

g(K) and y are the same as in (45)) for although the path length from volume of 
intersection to grating may be different in the two cases, information travels at 
the speed of light. For simplicity, the two gratings have been assumed identical. 

The correlation between the two signals is thus 
-~ ~ 

AJ, AJ, = P2h2N2.LlL,h41~ C g2(K) cos (y  - $nL1) cos (y  - +ZL2) 
K 

sin (+nLl) sin (gnh) sin ( QZL,) sin (&Zh) sin2 [+(m - kO)h] 
+nL, Qnh *ZLz +Zh [+(m-k0)h]2 

--- X 

x sin [ &al] 2 + m 2  sin [ m2 T c i . 1 .  + n2 (47) 

Terms of type g(Kl) g(K,) are zero, approximately, in areasonabljr homogeneous 
field, i.e. when k,D S 2n, as in the single-beam case, for then there is little 
correlation between different wave-number components. 

Now if the widths of the weighting functions in (47) are small compared with 
the magnitude of the central wave-number, the various functions of (I, m, n) can 
be replaced approximately by their values at  this central wave-number, namely 
at  (0, k,, 0). This condition is equivalent to koh 9 2n, since L,, > h. Therefore 

-- 
AJl AJ, = p2h2N2Ll L, h41isin 

sin (QnL,) sin (-in ) 
dn 

- m  &nL, +nh 

(48) 
co sin (gZL2) sin (&?h) d I J  sin2 [g(m - k,)h] 

~ - - ~  dm. 
--m +1L2 Qlh - m [&(m - k0)hI2 

Here, (23) has been used, and the sums written as integrals under the condition 
D 9 h. 
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From standard tables, the last integral is 2n/h. The other two integrals are of the 
same type, and by writing the function (sinp)/p as the Fourier transform of a 
' top-hat ' function, one can show that 

(49) 

Using these integral results, (48) becomes 

(50) AJ,AJ2 = 8n31;P2h2(h2)N2hsin (=)sin(*') @i dl G(O,k,, 0). 2N 

Compare this with the single-beam result (28) 

A T  = 8n31i P2h2(L2)N2hsin2 (@d/2N) G(0, k,, 0). 

If one remembers that the grating area in (28) is L2, and in (50) is h2, this is a 
notable result, for if we put d, = d2 = d, then AJ,AJ2 is equal to-2, with one 
important qualification; G(0, k,, 0)  is averaged over the beam length in (28)) but it 
is the mean value only over the volume of intersection of the beams in (50)) this 
equation being independent of L, and L2 and depending only on a scattering 
thickness h. 

The assumptions made in this derivation are exactly analogous to the single- 
beam case, and can be reduced to the statements: (i) many lines are needed in 
each grating, i.e. the sampling volume must be large compared with the structure 
being measured; (ii) homogeneity is needed over a scale at  least that of the 
sampling volume. 

Note that the method measures the one-dimensional spectrum component in 
the direction normal to the plane containing the beams. 

4. The determination of velocity distributions 
4.1. The principle 

The use of grating analysis of a light beam, so far described for determining 
structure power spectra, can be extended to measure velocity distributions. 

Basically, one regards the intensity pattern incident upon the grating as 
moving rigidly past it. The frequency distribution of the output light signal is 
then characteristic of the velocity distribution within the aperture (in the 
direction normal to the lines of the grating) and of the periodicity of bhe grating 
used. As presented here, this is for the single-beam case only. 

4.2. The theory 

Let the direct signal from the photo-cell bef(t), where t = time, and consider it 
sampled for a time T. f ( t )  is fed to one input of a multiplier unit. Write f(t) as a 
Fourier sum in which the component frequencies are integral multiples of 
2n/T, i.e. m 

where, from (8) and ( 11) 
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The other input of the multiplier (response constant j) is fed with a signal 
a cos wo t ,  giving the product signal 

j f ( t )  a cos wot = j a  [+F(w) ei(w+ou)t + ' B ( w )  2 ei(w-wo)t] 
0 

Since f ( t )  is a stationary random function, so isjf(t)acosw,t, and its s.d.f. can be 
written, using (1 l), as 

F(w) j 2 a 2 [ ( T / 2 ~ ) B F ( ~  - w o ) F * ( ~  - wg) + (T/27~)$P(w + ~ 0 )  P * ( w + w O ) ] .  (54) 

This assumes no correlation between the phases of different frequency compo- 
nents, i.e. T 9 time scale off(t). 

The product signal is then passed through a low-pass filter, which effectively 
has a band width Aw on each side of zero frequency. The mean square output 
from the filter is then 

s = SAW g ( W ) d W ,  ( 5 5 )  
-Aw 

the integral over a discrete frequency range being valid if TAU 9 2 7 ~ .  Therefore 

= j2+a2(T/%) ( 2 h ~ ) 4 [ F Y * (  -w0)  +BJ'*(w,)], (56 )  

since wo a Aw for a filter of very narrow pass band. 
The mean-square filter output is thus j2 x (mean square input oscillation) 

x (total bandwidth of filter) x (even part of power spectrum off, evaluated at 
input oscillation frequency wo.)  

It is convenient to write the even part of the power spectrum of f ( t )  as M ( w ) ,  so 

S(0,) =j26a2(2Aw) M(w,). (57) 

Note from (52) that f2(t) = 

so that 

This is a useful result in that it gives the total area under the S us. w curve, which 
in practice may need closure. Note also that 

However, the component frequencies in f ( t )  result from the motion of an 
intensity pattern past the grating, and if the time for the pattern to move past 
one grating period is small compared with the (Lagrangian) time scale of the 
turbulent motions, the moving intensity pattern can be regarded as rigid in 
time, so that w = uko, where u is the component of velocity normal to the lines 
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of the grating, and k, is the grating wave-number. Therefore, using (57) and (59), 
- -  
u2 = w=k,2 

This thus provides a method of finding the mean-square (total) velocity of the 
turbulent motions within the aperture. Also, M(w) ,  measured via X(w) and 
equation (57), represents the velocity distribution (in the sense of probability of 
occurrence) within the aperture if w is written as uk,. The method does not 
distinguish between positive and negative velocities. 

A similar method for measuring velocity fields by a frequency analysis of the 
light transmitted by ;I grating is presented theoretically by Block & Milgram 
(1967). They isolate a plane in the flow by passing the light radiated by the flow 
through a finite single lens, the degree of isolation increasing with the size of lens 
aperture. The ‘focused ’ image then falls on the grating. As with the above method 
the application to  turbulence is restricted to  slowly varying flows by the con- 
dition that the time scale must be large. If one attempts to use this method to 
measure local velocities by using a small aperture, resolution along the optical 
axis is lost, and the laser Doppler velocimeter may give more meaningful results. 

5. Experimental use of the single-beam configuration 
5.1. The turbulent region investigated 

To test the above theoretical ideas, a single-beam configuration was set up to 
investigate the refractive index structure of a rectangular tank of water, heated 
from below and cooled from above. This is a particularly simple way of providing 
a turbulent refractive index field. Also, this is not an easy situation to investigate 
by hot-wire anemometers as the working fluid is a liquid, with no mean velocity. 
The Rayleigh number was 4.1 x los, so the flow could be considered fully 
turbulent (Malkus 1 9 5 4 ~ ) .  

5.2. The optical apparatus 

Basically, the apparatus was a suitably-equipped optical bench, approximately 
7 ft. long, of maximum rigidity. It had two parallel tubes on which projector and 
analysis subassemblies could slide. The tank was mounted on an independent 
support approximately half-way along the tubes. Working to maximum simpli- 
city, the parallel beam of light was provided, on the projector subassembly, by a 
24 V, 150 VA halogen-quartz lamp, pinhole and lens arrangement as indicated in 
figure 2. The consequences of using white light will be discussed later. The method 
could well be adapted to incorporate a laser beam. The parallel beam had an 
angular divergence better than 1 part in 2000, and the limit of resolution at the 
receiving grating due to  finite pinhole size was 0-2 mm. 

The tank, of base 33 x 33 cm and height 16.5 em was constructed from optical 
quality plate glass, and had its conducting base heated by 8 small heater 
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elements clamped to its underside. The upper conducting plate was cooled by a 
series of water-carrying tubes, separated from the plate by a thermal resistance to 
ensure uniformity of temperature. Lateral temperature variation over both plates 
was of order f 0.2 "C for a temperature difference between the plates of 5 "C. 
Temperature measurement was by surface thermocouples. 

After leaving the turbulent region (the tank), the beam travelled 61-8 cm before 
projecting its shadowgraph image onto the grating, mounted directly on the 
receiving lens and capable of rotating through 360". Turbulence in the inter- 
posed air produced a negligible signal. The gratings were of square wave trans- 
missivity (alternate black and transparent stripes) made photographically from a 
large hand-painted master. Periodicity varied from 40.5 mm to  0.57 mm over 
14 gratings. Three circular apertures were used, of diameters 7.30, 4.45, 3.20 cm, 
set by an iris in the projecting lens, but these were stopped down to 6-85, 3.95, 
2.70 cm respectively at the grating to eliminate the Fresnel diffraction pattern of 
the iris aperture (Roe 1968). The limit of resolution set by diffraction was of order 
10-2mm, i.e. much less than that set by finite pinhole size. The receiving lens 
focussed the light transmitted by the grating onto a photocell. The latter was an 
OCP 71 phototransistor. Time prevented the development of a more sensitive 
photocell arrangement. 

The three fundamental difficulties experienced all resulted from the sensitivity 
of detection needed, as the desired signal fluctuations were only of order 1 % of 
the beam signal. Even the latter was feeble as produced by the simple pinhole 
system. The difficulties were: (i) A poor signal/noise ratio from the photocell. 
For correction purposes, it was necessary to find the noise level as a function of 
time. (ii) Bench rigidity. Nothing short of a thick concrete floor prevented 
extraneous vibration contributing to the signal fluctuations. (iii) Obtaining a 
stable light output from the projector. Any ripple in the light output readily 
swamped the desired signal. The final solution was a 24V d.c. supply from two 
heavy duty accumulators, with output calibrated against discharge time. 

5.3. The electronic apparatus 

The analysis of the photocell output, after removal of the d.c. signal and after 
amplification, took two forms: (i) The formation of a mean-square signal, for 
measurement of the s.d.f. of the refractive index field. (ii) The frequency analysis 
of the signal for measurement of velocity distributions. 

(i) Squaring by vacuo-junction was tried, but the low-frequency components 
of the signal (which was predominantly in the range 0.5-10Hz) meant that the 
junction was not working under constant filament temperature conditions. Also, 
the signal was characterized by periodic bursts of intensity, giving a very short 
life to the sensitive filament of the vacuo-junction. 

The final method used was to construct a multiplier unit based on a Hall-effect 
multiplier device. Such devices have limitations a t  high frequencies, but are 
eminently suitable for low-frequency applications such as this. With a common 
signal to the two multiplier inputs, the result is the desired squared signal (Roe &, 
Yates 1968). For averaging, because of the long averaging times needed, an 
integrating voltmeter comprising a voltage-frequency converter (using the 
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discharge characteristics of a unijunction transistor) and a, decade counter was 
developed (Roe & Yates 1968). 

(ii) Here, the photocell output was multiplied by a signal of frequency w, from 
a U.L.F. signal generator, the multiplying again being done by a Hall-effect 
device. For each component frequency w in the photocell signal, the multiplier 
output contained the sum and difference frequencies w + w, and w - w,. Passing 
this (after amplification) through a low-pass active filter network (bandwidth 
0.14 Hz) produced an output only when w - w, was close to zero, i.e. w close to w,, 
the sum frequency being rejected by the filter. This low-frequency filter output 
was recorded on a chart recorder and the mean-square output found numerically. 
Zero drifts in the d.c. coupling prevented the Hall-effect squaring unit being used 
in this instance. (See full theory $4.2.) 

6. The power spectrum results 
6.1. Treatment of results 

With time scales of order several seconds, and bursts of intensity approximately 
every 30 sec, time averages over less than 5 min were of little value. In  practice, 
1 min decade counts were integrated over 20 min, enabling a mean 1 min count 
and standard deviation to be calculated. These counts were corrected for noise, 
variations in overall transmissivity between the gratings, and the fall of battery 
voltage with time. The final graphs of spectral density function were harmonically 
corrected for the square wave grating transmissivity (see 5 2.6). 

6.2. The scope of the results 

The central axis of the beam was confined to the vertical central plane of the tank, 
at  two heights, 2-7 cm and 5.9 cm above the tank base. At each height G(k,, 0,O) 
and G(0, k,, 0) were measured, where the beam direction defined the x axis. At  the 
lower beam height, the 6-85 cm aperture could not be used.. Otherwise, the largest 
aperture available for the grating of choice was used (the high wave-number 
gratings were of restricted aperture due to the photographic method of 
construction). 

6.3. The function E 
This function, given by equation (32), was calculated on the basis of the mean 
wavelength of the white light used, and is shown as a log-log plot in figure 6. It will 
be noted that E deviates from a fourth-power dependence on k, only at  the high 
wave-number end of the grating range used. From $2.5 it  may thus be deduced 
that the wavelength of the light used only becomes important at  these high 
wave-numbers. Any adverse effects of using white instead of monochromatic 
light can only be expected therefore for log,,(k,) 2 1.8. 

6.4. Graphical presentation 

Recalling equation (31), = (47r31~P2h2L2)N3EG. 

Figures 7 and 8 show respectively A T  vs. wave-number, and G us. wave-number, 
G being calculated from the above relation. k, is 27r/(grating wavelength), and 
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FIGURE 
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Log,o(kl cm-l) 
6. The function E(ki/N,  z ,  H): N = 1.3 x 105 cm-1, z = 61.8 cm, 

2'o t 
H = 33.0cm. 

Log,o(hl cm-l) 

FIUURE 7. Mean square signal fluctuation. -, upper height, vertical distribution, (grating 
lines horizontal) ; - -, upper height, horizontal distribution (grating lines horizontal) ; 
- - - -, lower height, vertical distribution; - - - , lower height, horizontal distribution. 
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measured in cm-l. Althoughfigure 8 is the principal result here, figure 7 is useful in 
showing the finer structure of the spectrum because of the relatively weak 
dependence of upon k,. For clarity, points have been omitted from the 
curves, but each curve was constructed from approximately 20 points, each 
with an experimental tolerance of about & 0.04 in both log,,(AT) and log,,(G). 

G(0, k,, O ) ~ ~ ( k ~ ’ - 0 . 0 8 6 )  
-. _,  [Malkus] 

.-. 
-._. 

-. ._ .. -.. 

*\ 

I I I I 

0.5 1 .o 1.5 2.0 
Login(ko em-’) 

FIGURE 8. Spectral density function. __ , upper height, G(0 ,  ko, 0),  vertical dis- 
tribution ; - - , upper height, G(ko, 0, O ) ,  horizontal distribution; - - - -, lower height, 
G(0, k,, 0 ) ,  vertical distribution; - - -, lower height, G(ko, 0, 0), horizontal distribution; 
-.--.-- , theoretical curves. 

7. Discussion of the spectral density function results 
7.1. The nature of the signal 

Periodic surges in signal strength, corresponding to surges in turbulent activity, 
were observed fairly regularly on a time scale of order 30 sec. These surges were 
emphasized by the squaring operation. Their precise origin did not become known 
during these investigations, but familiarity with their characteristics led to some 
intuitive ideas. 

Generally, the longer the quiescent period prior to a surge, the more intense 
was the ensuing surge. Frequently, indeed, no distinct peak would occur for 
several ‘ cycles ’, but the signal level would be higher than the aforementioned 
quiescent periods, as if the surges had become broken into smaller, more fre- 
quent units. It seemed that over a period of about 30sec, a certain amount of 
energy had to be released in the tank by the creation of turbulent motions and 
subsequent dissipation (corresponding to the net heat input over that period). 
This energy was sometimes released quasi-continuously , sometimes in surges. 

40 F L M  43 
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In  the latter case, energy was stored in the conduction layer (approximately 
1 mm thick in this instance) adjacent to the hot tank base until the situation 
became unstable, when a burst of hot-water plumes would rise from the conduc- 
tion layer until the stored energy was released. Another quiescent period would 
then follow. Whether the creation of turbulent energy took place quasi-continu- 
ously, or in surges, probably depended upon how the flow field adjacent to the 
conduction layer affected the stability of this layer. 

7.2. The presence of the tank side-walls 

Townsend (1959) has shown in an air-box experiment that the convective 
motions are determined primarily by the motion and structure of the lower 
conduction layer, which here is too thin to be affected appreciably by external 
influences at  such relatively large distances from the centre as the side-walls. 
This is not likely to be the case during quiescent periods, but the signals are much 
smaller then. However, for the width: height ratio of 2 :  1 used here (determined 
mainly by practical optical considerations) it would perhaps be too optimistic to  
assume that turbulent activity, particularly for large-scale motions, was a 
function of height above the tank base only, as is assumed in most theoretical 
models. 

7.3. Theoretical forms for the spectral density function G(1, m) n) 

It will here be assumed that G(1, m,n) the s.d.f. for refractive index fluctuations, 
is proportional to the s.d.f. for temperature fluctuations, as indicated in $2.4. 

Malkus (19546) considers a simple model of convective heat transfer, in which 
the instantaneous temperature fluctuation 6 is taken as a function of height in the 
tank (y) only. He shows that for a total height d 

PO 
where 6 is written in the form f(p)sin(pny/d), m = p / d ,  andp, is the highest 

mode with significant contribution to 82. In  this case po  was calculated 8s 
p = l  

This is plotted, with a vertical shift for clarity, in figure 8. This model is only 
applicable to tho small wave-number end of the spectrum, and within this range 
agreement of slope with the experimental curve for G(0, m, 0 )  is fair. 

Note that the experimental method presented does not account for constants of 
proportionality (i.e. absolute calibration of the apparatus), leaving the experi- 
mental log-log plots arbitrary to the extent of an ordinate constant. The aim of 
the invcstigation was merely to find slopes of these log-log plots. A method of 
obtaining absolute calibration is given by Roe (1968). 

The large wave-number end of the spectrum is discussed by Batchelor (19596) 
in a paper on the small-scale variation of convected scalar quantities like tem- 
perature. The scale is assumed sufficiently small for the temperature fluctuations 
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to be regarded as passive quantities on which is imposed a velocity field, which 
may or may not be due to (large-scale) temperature variation. The treatment is 
analogous to the Kolmogoroff (1941) theory of velocity fields. The theory relies on 
the existence of an equilibrium range of wave-numbers, within which there may 
be a ‘convective subrange ’ (analogous to the Kolmogoroff ‘inertial subrange 7 if 
the turbulent Reynolds number is high enough. 

Isotropy is assumed for the equilibrium range. Just as velocity fields tend to  
isotropy at  high wave-numbers, so, it  is assumed, do temperature fields. Thus 
G(Z, m, n) becomes G(K) as in (30). 

For the convective subrange, Batchelor shows that 

G(K) cc eOdK*, (62) 

where eo is the contribution to - @/at) (4 mean square temperature fluctuation@) 
from conduction, and B is the contribution to - (a/at) (+ mean square velocity 
fluctuation 2) from viscous dissipation. 

Alternatively, the spectral contribution to @ between K and K + dK is 
47rKZG(K) dK, where 

4n-K2G(K) a K-3 

This is analogous to the much-investigated - $ power law in velocity fields. 
The function G(K) a K - y  is shown in figure 8 (with a vertical shift for clarity), 

and the agreement with the present experimental results is seen to be very good 
over a significant range of wave-numbers. 

It was estimated, from time and velocity scales, that the turbulent Reynolds 
number &(A) = uh/v (where h is the Taylor dissipation scale) was here of order 
40. Batchelor (1959a) shows that an equilibrium range exists when Re 2 50, so a 
small one may exist here, but the existence of a convective subrange seems un- 
likely. The above agreement with theory is thus a little surprising, although a 
-$ power law has been observed in velocity fields with a turbulent Reynolds 
number too small for an inertial subrange to exist. Also, these - $ power laws do 
not seem to depend critically on having perfect isotropy. 

Batchelor (19593) suggests that for the case u 9 K (as for wats) ,  the viscous 
cut-off of the spectrum occurs at  a wave-number of order (c /v3)i ,  and the conduc- 
tion cut-off at ( B / v K ~ ) * ,  the ratio being the Prandtl number ( v / K )  raised to power +. 
This is approximately 2-5 for water at  25 “C, as here. Also, in between the cut-offs, 
the spectral density function takes the form 

G(K)  cc K-3 exp [KK”~], (64) 

where y (negative) is the average least principal rate of strain on the high wave- 
number components of@ due to the convective motions of the velocity field with 
wave-numbers 5 (4v3)%. 

Figure 8 does indeed show two apparent cut-offs, at  log,,L, N 1.75 and 
log,,k, 21 2.15, i.e. k, = 55 and 140cm-l respectively. This is a ratio of 2.5 as 
predicted. There is also a change in slope between these two cut-offs, but the 
increase in slope is far too large, most probably due to the function E being 

40-2 
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too small at these wave-numbers. It will be recalled (56.3) that E as used here is 
unreliable for log,, (k,) 2 1.8, because of the use of white, instead of monochro- 
matic, light. 

7.4 .  Additional observed features of the spectral density function 
w, m, n) 

(i) If it  is assumed that the peak in the s.d.f. curves for 1.75 < log,,(k,) < 2.15 
is explained as above, it still remains to explain the undulations for 
log,,(ko) < 1.75, particularly the rise and sharp fall (figure 7) at log,,(k,) 21 1.4 
(wavelength 2-5 mm). It is apparent that some significant structure exists 
at  this wa(ve1ength. One advantage of an optical method is that a screen can 
be interposed and the structure observed. 

This wavelength was found to correspond to the width of the interfacial region 
between the plumes of hot fluid and the surrounding cooler fluid. The width of 
this region is governed by combined molecular and turbulent diffusion. 

Similar, but unexplained, undulations have been observed by Deardorff & 
Willis (1967), but at a smaller relative wave-number (wavelength expressed as a 
fraction of tank height). They towed hot wires through a heated air-box, and 
obtained the s.d.f. in the range lOd to i d ,  whereas the present optical method was 
complementary in the sense that it covered the range i d  to &d. Their tank 
width: height ratio was variable in the range 25: 1 to 3: 1, whereas the present 
tank was fixed at 2 : 1. This could explain why their undulations were at a smaller 
wave-number, as reduction of this ratio pushes energy to smaller relative wave- 
lengths, i.e. higher relative wave-numbers. 

(ii) The s.d.f. curves corresponding to the beam at the lower height lie above 
those for the beam at the upper height (the arbitrary ordinate constant was the 
same for ad1 curves). This implies that, for the range of wave-numbers covered, the 
contribution to @ is greatest near to the tank base. This is to be expected, as it is 
in this region that a large proportion of the turbulent fluctuations are generated. 

(iii) It will be observed that, for a given beam height, the s.d.f. curves have 
similar shape, but with a relative shift parallel to  the wave-number axis. This is 
best seen in figure 7. This fact can be used to  estimate the extent of anisotropy in 
the turbulent field. 

For the upper beam height case, this shift corresponds to an ‘eddy’ height- 
width ratio of about 1*6:1 for log,,(lc,) < 1.5, with the extent of anisotropy 
decreasing to zero with increasing wave-number. The tendency of turbulent 
fields to isotropy at high wave-numbers (‘local isotropy’) is an integral part of 
turbulence theory, and its existence is thus demonstrated here (see also 97.3). 

The extent of anisotropy is less at the lower height (vertical elongation pre- 
sumably being restricted by the proximity of the tank base), the height:width 
ratio being about 1.2:1 for log,,(k,) < 1.5, again decreasing to unity with in- 
creasing wave-number . 

(iv) Note also that, comparing upper and lower beam height results, more 
energy is pushed into the smaller scale structure, at the expense of larger scales, 
as the tank base is approached. 
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8. The velocity distribution results 
8.1. The results 

Results were taken only at the lower beam height, with the lines of the 1.45 mm 
grating horizontal (to measure vertical motions) and vertical (to measure hori- 
zontal motions). The frequency distribution in the signal for these two cases is 
shown in figures 9 and 10. 

Because of the finite bandwidth of the filter, it was unreasonable to analyze 
below 1 Hz, as below this frequency the filter passed a proportion of the sum 
frequency, in addition to the desired difference frequency (see 5 4.2). Closure 
below 1 Hz was effected by using (58), and is shown dashed in figures 9 and 10. 

0 2 4 6 8 10 12 14 16 18 20 
Hz 

0 0.5 1.0 1.5 2.0 2.5 
cm s-1 

FIGURE 9. Velocity distribution within the beam aperture : vertical motions. 

0.6 0.7 t 

0 2 4 6 8 10 12 14 16 18 20 
Hz 

0 0.5 1.0 1.5 2.0 2.5 
cm s-l 

FIGURE 10. Volocity distribution with the beam aperture : horizontal motions. 

8.2. Comments on the results 

The principal difficulty experienced in this method was the noise output from the 
photocell, which gave an extended tail to the frequency distributions. It was 
considered that above 10 Hz the signal was largely noise, and so for calculating 
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the r.m.s. velocitythe curvewas cut off here (it is showndashed beyond this point). 
This rather arbitrary approach was used as only an estimate of the r.m.s. velocity 
was required. Using (60), the r.m.s. velocity for vertical motions was 0.35 cm/s, 
and 0.46 cmjs for horizontal motions. 

Also shown (dotted lines) in figures 9 and 10 are Gaussian distributions having 
the same variance as the experimental distributions. It will be observed that the 
observed distributions have a much higher flatness than the corresponding 
Gaussian distributions. This might be expected of a motion which by nature is 
spasmodic, with small velocities in quiescent periods, and large velocities when a 
plume passes through the beam. This flatness is probably exaggerated by the 
fact that motions associated with the plumes contain the largest temperature and 
refractive index fluctuations. In addition, the flatness is greater for vertical than 
for horizontal motions. Thisis because vertical motions are more dominated by the 
spasmodic passing of plumes. 

9. Statistical analysis of the spectral density function results 
9.1. The information available 

It became apparent during the course of this investigation that the statistical 
distribution of the 1 min signals contained information about the Eulerian 
time-scale of events within the beam aperture. The following analysis was used to 
extract this information. 

9.2. Preliminary analysis 

Let w be the direct signal (fluctuation), i.e. W = 0. Let x be the squared signal, 
i.e. x = w2. Also, let the probability of the direct signal lying between w and 
w+dw be p(w)dw. So, if the probability of the squared signal lying between 
x and x + dx is P(z)  dx, 

P(z)dx = P(w”d(w2) = p(w)dw+p( - w)dw = 2p(w)dw 

This assumesp(w) is symmetrical about w = 0. P(x) is therefore weighted towards 
low values of I wI , i.e. low values of x. 

The direct signal results from a summation of events over the path length of 
the beam through the turbulence, a high proportion of which are uncorrelated. 
It is not an unreasonable approximation therefore to  take p(w) as a normal 

1 distribution, viz. 
P W  = ~ exp [-!el 2w; * 

J(2r)wCI 

Then z = soy zP(x)dx = W t ,  

and the probability of the squared signal lying below the mean, 2, is 
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Now if the sampling, i.e. integrating, time of lmin  is much less than the 
Eulerian integral time-scale F of events contributing to the signal, the 1 min 
readings should have the above P ( x )  distribution, with a proportion 0.68 below 
the mean. But if the sampling time is much larger t h a n y ,  the original nature of 
the direct signal will be lost, and the squared signal will become effectively a 
random array of uncorrelated pulses, having a normal distribution, the 1 min 
readings then having a proportion 0-5 below the mean. For 735 1 min readings, a 
proportion 0.56 were on average below the 20 min mean. It was expected there- 
fore that F was within the 1 min sampling time. 

9.3. Calculation of the integral time-scale F 
z(t) is the instantaneous squared signal. Let z1 be the 1 min sample, i.e. 

1 T  
x 1 - -  - .(t)dt, with T = 1min. 

-~ - 
Now z1 = S+el ,  so z: = = Z2+e: = Z 2 + a 2 ,  (69) 

- -  where x = x1 = average of x ( t )  over all time (20min here), 
e( t )  = instantaneous deviation of x ( t )  from S, 

el = deviation in 1 min sample, 
B = standard deviation in 1 min sample. 

so from (69), 

= x2 - + &JOT’ JOT e(t)eo dt dt ’, 

e(t)e(t’)dtdt’. 

Transforming this integral, 

a2 = $JoTdt / :e ( t )eodt ’  = - A S O T  dt 1: e(t)e(t-T)dT 

where T = t ’ - t ,  and R(T) is the time correlation function for fluctuations in z(t). 
Therefore 

If R(r) << 1 for r > T, i.e. for time-scales less than T ,  as here, 
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Therefore (74) 

by definition of integral time-scale (Hinze 1959). Now e2(t) = 7- w;, and if a 
normal distribution is again assumed forp(w), 3 = 3w& giving e2(t) = 2w; = 2 9 .  

Hence, from (74), 

This simple relation enables 9- to be calculated from values of a / Z  extracted 
from the experimental results. 

9.4. An alternative approach 

As above, assume a normal distribution for the direct signal w(t). Then, from 
(65) and (66), 

Suppose now that xis constant for time intervals of length T ~ ,  then change to an 
uncorrelated value for period ro (i.e. as the number of steps +GO, T,,+F, the 
required time-scale). 

Define 
(77)  

the integrated squared signal over 27,,, divided by ro. 
For the first two intervals (see figure ll), v = x’ fd’, so x’ has the range 0 to v. 

j y ; ~ 

I I 
I 

t 
7 0  7 0  7 0  

FIGURE 11. Statistical model for squared signal. 

Thus the probability density function for v, over two periods T ~ ,  is 

=-..P[-&] 1 
2w; 

In similar fashion, the probability density function for 

(79) 
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the integration now being over 4r0, can be found, viz. 

P2(x‘ + x”) P2[v - (x’ + x”)] d(x’ + 2’ 
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= (&i2vexp[ 4- 
Similarly, P6(V) = loW P2(x’ + x”) P,[v - (x’ + x”)] d(x’ + x”) 

V+1 

( in -  l)! 
By induction, Pn(v) = (2wi)-h- 

P,(v)dv is the probability that, after n steps, the integrated squared signal lies 
between v and v + dv (n even). 

The average value of this integrated signal after n steps is (using (82) )  

Z(n) = vPn(v)dv = nw;. L* 
It is easily verified by differentiation that P,(v) has its maximum value at  

v(n) = (n - 2)  w;. Thus the most probable v is less than the mean v, the relative 
difference diminishing as n increases; this is the conclusion reached by a different 
method in $9.2. 

From (82)  can be calculated the proportion of 1 min samples, B, lying below the 
mean (i.e. the probability of the 1 min integrated squared signal lying below the 
mean). 

After some reduction, this gives 

B = 1 - e-%(b), 

where 
b b2 bb-1 
l !  2 !  ( b - l ) ! ’  

Z ( b )  = I+-+-+...+- 

a truncated 6 series. The table below shows B evaluated. 

b = +n 1 2 3 4 5 
B 0-6321 0.5941 0.5779 0.5665 0.5596 

b = i n  6 7 8 9 10 

B 0.5538 0.5506 0.5478 0.5443 0.5422 

(83) 

(84) 

Note the slow convergence to  0.5. Knowing the proportion of lmin samples 
lying below the mean, this table enables the number of time-scale steps, n, in the 
1 min interval to be found-hence the time-scale. 
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9.5. The values of the time-scale found 

For the method of 0 9.3, the following results were obtained for the time-scale F 
in seconds. 

Vertical motions 
Aperture beam upper Hor. motions Vert. motions Hor. motions 
(4 height upper height lower height lower height 

6-85 0.90 f. 0.10 1-45 t_ 0.10 - - 
3.95 1.95 -I 0.40 2.65 f 0.35 1.75 f 0.60 2.40 5 0.70 
2.70 2.65 f 0.40 2.80 f 0.25 3.05 + 0.55 2.65 + 0.25 

The following conclusions may be drawn within experimental error: (i) No 
detectable difference in upper and lower height time-scales. (ii) No detectable 
difference for horizontal and vertical motions. (iii) A distinct trend towards 
longer time-scales for smaller apertures. This is due to a smaller aperture giving 
more localized measurements, with less opportunity for events to average 
themselves within the area of the aperture. This idea can be extended further, for 
extrapolating the above time-scales to zero aperture gives the Eulerian time-scale 
at a point, Fp say. For vertical motions Yp = 4-0 f 0.5 see. For horizontal 
motions 2% = 3.7 & 0.2 see. 

The corresponding results for the method of 3 9.4 did not show the above trends 
as clearly, due to the combination of random experimental error and the slow 
convergence of the function B. A mean value for all configurations was thus 
found. An average of 90 values gave B = 0.548 f 0.008, and n (from the table) 
as 16 & 6. The corresponding time-scale of 6O/n was therefore 4.3 & 1-6  see. 

It is reassuring that these two quite different methods give consistent results. 
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